Free Porn





teen sex
best porn 2025
porn 2026
brunette banged
Ankara Escort
deneme bonusu veren bahis siteleri
deneme bonusu
casino slot siteleri/a>
Deneme bonusu veren siteler
Deneme bonusu veren siteler
Deneme bonusu veren siteler
Deneme bonusu veren siteler
Cialis Fiyat
deneme bonusu
deneme bonusu 1xbet وان ایکس بت 1xbet وان ایکس بت 1xbet وان ایکس بت 1xbet وان ایکس بت 1xbet وان ایکس بت 1xbet وان ایکس بت 1xbet وان ایکس بت 1xbet وان ایکس بت 1xbet 1xbet untertitelporno porno
Home Finance Citi Invests in AI Firm Anaconda

Citi Invests in AI Firm Anaconda

Recently, Citi Ventures made a move to secure its place in the future by investing in Anaconda, an artificial intelligence-based software company.

Citigroup, Citi Ventures’ parent company has utilized the popular open source software for several years across its enterprise.

Although the investment size was not revealed, it was said to be important for three reasons including:

1.It acts as a sign that additional banks are integrating artificial intelligence

Large banking institutions including Ally Bank, BBVA, the Bank of America and Wells Fargo are some of the many large banks boasting AI deployments.

According to the Market Structure Metrics Principal David B. Weiss, there is a continuously growing, five-year trend of banking institutions tactically deploying AI among other related technologies such as machine learning in a bid to target multiple processes in various parts of their businesses.

2.It serves as a feather in the cap of advocates for utilizing open source software for artificial intelligence

According to McWaters, a considerable part of this activity is carried out in an open source setting. He added that it shows that the algorithms and methodologies used to develop AI are somewhat commoditized.

3.It offers a window into Citi’s increasing AI use across the entire company

Ramneek Gupta, Citi Ventures’ co-head of venture investing, said that the company has been striving to create the technology stack, specifically at Citi in an effort of driving widespread adoption of machine learning within numerous functions and use cases.

SEE MORE: 10 Applications of Machine Learning in Finance

SEE MORE: Artificial Intelligence Revolution Disrupts Investment Banking

SEE MORE: Top 25 AI Software for the Banking Industry

Why Anaconda?

According to Anaconda’s CEO Scott Collison, every leading banking institution in the United States including JPMorgan Chase, HSBC, Barclays among others utilize Anaconda ’s software. Citi is the recent addition to the list.

While some banking institutions use Anaconda’s software for stress-testing, others such as Citi utilize it for AML and credit evaluation.

Even so, others use it for risk analysis, loan decisions, and treasury applications.

Its increased use and popularity among universities and students attracted Gupta’s team to Anaconda. According to him, when students who use Anaconda enter into the workforce, they would require a similar setting, and that increases the demand for the platform.

Gupta said that Anaconda’s enterprise license is easy to scale up. He said that carrying out tasks in production in a cloud like platform boasting thousands of nodes calls for a distinct version and scalable platform.

READ MORE: AI in Banking – A Look at the Top 5 Banks in the US

READ MORE: AI Could Replace 10,000 Jobs at Citi’s Investment Bank

Impediments of Large-Scale AI

McWaters said that accessing large and at times exclusive data sets for training algorithms is the challenging bit of incorporating AI tools such as Anaconda in large organizations.

In a study conducted recently through a partnership between Deloitte and the World Economic Forum, banking institutions described siloed environments not only through raw data that required cleaning up but also using legacy systems that needed revamping for the cloud before embarking on machine learning deployment.

As such, McWater said that even though such types of capability acquisitions could prove useful, they have to be combined with some expensive, challenging and relatively low-key investments, specifically in getting the tech and data of these legacy entities up to speed before you can start agile methodologies deployment.

Source AmericanBanker

Subscribe to our newsletter

Signup today for free and be the first to get notified on the latest news and insights on artificial intelligence

KC Cheung
KC Cheung has over 18 years experience in the technology industry including media, payments, and software and has a keen interest in artificial intelligence, machine learning, deep learning, neural networks and its applications in business. Over the years he has worked with some of the leading technology companies, building and growing dynamic teams in a fast moving international environment.
- Advertisment -


AI Model Development isn’t the End; it’s the Beginning

AI model development isn’t the end; it’s the beginning. Like children, successful models need continuous nurturing and monitoring throughout their lifecycle. Parenting is exhilarating and, if...